
Chapter3 Graphics Output primitive

Copy Right DTE&T,Odisha Page 14

3. Graphics Output primitive

Contents

3.1 Points & Lines

3.2 DDA Line Drawing Algorithm

3.3 Bresenham’s Line drawing Algorithm

3.4 Mid Point Circle algorithm

3.5 Boundary fill algorithm, Flood fill algorithm

3.1 Point

 Pixel is a unit square area identified by the coordinate of its lower left corner.

 Each pixel on the display surface has a finite size depending on the screen resolution &

hence a pixel can’t represent a single mathematical number.

 Origin of the reference coordinate system being located of the lower left corner of the

display surface.

 The each pixel is accused by non-negative integer coordinate

pair(x, y).

 The x values start at the origin &increase from left to right along

a scan line & y values start at the bottom & increase upwards.

 In the above diagram the coordinate of pixel A:0,0 ,B:1,4 ,

C:4,7.C:4,7.

 A coding position (4. 2, 7. 2) is represented by C.

 Whereas (1.5, 4.2) is represented by B.

 In order to half a pixel on the screen we need to round off the coordinate to a nearest

integer.

Line Drawing
 Line drawing is accomplished by calculating intermediate point coordinates along the

line path between two given end points.

 Screen pixel are referred with integervalues, plotted positions may only approximate the

calculate coordinates, what is pixel which are intensified are those which lie very close to

the line path.

 In a high resolution system the adjacent pixels are so closely spread that the

approximated line pixels lievery close to actual line path and hence the plotted lines

appear to be much smooth-almost like straight line drown on paper.

 In low resolution system the same approximation technique causes to display with stair

step appearance that is not smooth.

 C

 B

A

Chapter3 Graphics Output primitive

Copy Right DTE&T,Odisha Page 15

Line Drawing Algorithm

 The equation of a straight line is

 Y=mX + b

Where m representing slope of the line and b as the y intercept.

 Given two end points of a line segment are (𝑥𝑥1,𝑦𝑦1)&(𝑥𝑥2 ,𝑦𝑦2)

 Then the straight line can be written as𝑦𝑦1 = 𝑦𝑦2−𝑦𝑦1
𝑥𝑥2−𝑥𝑥1

𝑥𝑥1 + 𝑏𝑏 (1)

 We can determine the volume for the slope ‘m’ & y intercept ‘b’ with the following

calculation.

 𝑚𝑚 = 𝑦𝑦2−𝑦𝑦1
𝑥𝑥2−𝑥𝑥1

 (2)

 𝑏𝑏 = 𝑦𝑦1 −𝑚𝑚𝑥𝑥1 (3)

⇒ 𝑦𝑦1 = 𝑚𝑚𝑥𝑥1 + 𝑏𝑏

For any given x interval∆𝑥𝑥 along a line, we can compute the corresponding y interval∆𝑦𝑦

from the equ-2 𝑚𝑚 = Δ𝑦𝑦
Δ𝑥𝑥

 ⇒ ∆𝑦𝑦 = 𝑚𝑚∆𝑥𝑥

 Similarly we can obtained the x interval ∆𝑥𝑥 corresponding to a specified ∆𝑦𝑦 as ∆𝑥𝑥 = ∆𝑦𝑦
𝑚𝑚

 For a line with slope magnitude |m|<1, ∆𝑥𝑥 can be set proportional to a small horizontal

deflection voltage & the corresponding vertical deflection is then set proportional to∆𝑦𝑦 as

calculate from the equation∆𝑦𝑦 = 𝑚𝑚 ∆𝑥𝑥.

 For a line whose slopes have magnitudes|m|>1, ∆𝑦𝑦 can be set proportional to a small

vertical deflection voltage with the corresponding horizontal

deflection voltage set proportional to ∆𝑥𝑥calculate from the equation

∆𝑥𝑥 = ∆𝑦𝑦
𝑚𝑚

 For a line with m=1,then∆𝑥𝑥= ∆𝑦𝑦and vertical & horizontal

deflection voltages are equal.

 In each case a smooth line with slope m is generated between specified end point.

Chapter3 Graphics Output primitive

Copy Right DTE&T,Odisha Page 16

3.2DDA Algorithm(Digital Differential Analyzer)

 DDA is a scan-conversion line algorithm base on either ∆x or ∆y.

 We sample the line at unit interval in one coordinate & determined the

corresponding integer value nearest the line path for the other coordinate.

 Consider four cases for the DDA line drawing.

Case-1

Consider a line with +veslope,If the slope is less than or equal to 1.

If m<1, then x is incrementing faster.

The value of x=1 increment every time, compute& round they value.

As ∆x =1

Then ∆y =m

⇒ yk+1 − yk = m

⇒ yk+1 = yk + m

Where k takes integer value starting from 1,for the first point b increases by one until

the final end point is reached.

From the above equation we will get

 yk+1 = m + yk ,Thenx = x0 , y = y0

Illuminate the pixel (x,round (y))

x = x0 + 1

𝑦𝑦 = y0 + 1 × m Then illuminate Pixel(x,round (y))

Until it reaches at the endx == x1

Case-2

In this case Y increment faster in m>1

The step is y=1 increment, compute& round the value of x

Then ∆y = 1,∆x = 1
 m

xk+1 = xk +
1
m

Ifx = x0&y = y0

Then illuminate the pixel(round(x), y))

y = y0 + 1, x = x0 + 1
m

.

Illuminate the pixel(round(x), y)

Continue until y == y1

Chapter3 Graphics Output primitive

Copy Right DTE&T,Odisha Page 17

 If the processing is reversed, then we havefollowing two cases .

Case -1
If m<1, then x is incrementing faster

The value of x=1 decrement every time, compute & round the y value.∆𝑥𝑥 = −1

 Then ∆𝑦𝑦 = −𝑚𝑚

⇒ 𝑦𝑦𝑘𝑘+1 − 𝑦𝑦𝑘𝑘 = − 𝑚𝑚

⇒ 𝑦𝑦𝑘𝑘+1 = 𝑦𝑦𝑘𝑘 − 𝑚𝑚

Where k takes integer value starting from 1, for the first point b increases by one until

the final end point is reached.

From the above equation we will get𝑦𝑦𝑘𝑘+1 = −𝑚𝑚 + 𝑦𝑦𝑘𝑘

Then 𝑥𝑥 = 𝑥𝑥1 ,𝑦𝑦 = 𝑦𝑦1

Illuminate the pixel (x,round(y))

𝑥𝑥 = 𝑥𝑥1 − 1

𝑦𝑦 = 𝑦𝑦1 − 1 × 𝑚𝑚 Then illuminate Pixel(x,round (𝑦𝑦))

Until it reaches at the end𝑥𝑥 == 𝑥𝑥0

Case-2

If m>1then ∆𝑦𝑦 = −1,∆x = − 1
m

xk+1 = xk −
1
m

x = x1 ,y = y1

Illuminate the pixel (round (x), y)

y = y1 − 1 , x = x1 −
1
m

Illuminate the pixel (round (x), y)

Until you reaches at the endpoint y == y0

Advantages

 DDA algorithm is a faster method for calculating pixel position then the equationof

apixel position. Y = mx + b

Disadvantages

 Accumulation of round of error is successive addition of the floating point increments

is used to find the pixel position but it take lot of time to compute the pixel position.

Chapter3 Graphics Output primitive

Copy Right DTE&T,Odisha Page 18

3.3 Bresenham’sLine Drawing Algorithm

 An accurate & efficient raster line– generating algorithm developed by Bresenham.

 Scan converts lines using onlyincrementalinteger calculation that can be adapted to

display circle & other curves.

 The vertical axis show scans line position & horizontally axis

Identify pixel columns.

 We need to decide which of two possible pixel position is closer

to the line path at each sample step.

 W e first consider this scan conversion process for lines with +ve slope <1.

 Pixel position along line path are then determined by sampling x interval.

 Starting from left end point (𝑥𝑥0 ,𝑦𝑦0) of a given line.

 We step to each successivecolumn(x position) &plot the pixel whose scan-line y value is

closest to the line path.

 Consider the following diagram.

 From the above diagram figure-2 the pixel at (𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘) is the starting point of the line.

 We next do decide whichpixel to plot in column𝑥𝑥𝑘𝑘+1.

 Our choices are the pixel at position(𝑥𝑥𝑘𝑘 + 1 ,𝑦𝑦𝑘𝑘) and (𝑥𝑥𝑘𝑘 + 1 ,𝑦𝑦𝑘𝑘 + 1)

 At sapling position𝑥𝑥𝑘𝑘 + 1, we label vertical pixel separation from the mathematical line

path as 𝑑𝑑1and 𝑑𝑑2.

 The y –coordinate on the mathematical line at pixel column position xk + 1 is calculated

as 𝑦𝑦 = 𝑚𝑚(xk + 1) +b

 Then d1 = y − yk

⇒ 𝑚𝑚(xk + 1) + b − yk

And d2 = (yk + 1) − y

= yk + 1− m(xk + 1) − b

The deference between thesetwo separations is

d1 − d2 = m(xk+1) − yk − (yk+1) + m(xk+1) + b

⇒ 2𝑚𝑚(xk+1) + 2b − yk − yk − 1

⇒ 2𝑚𝑚(xk+1) − 2yk + 2b − 1 (1)

Chapter3 Graphics Output primitive

Copy Right DTE&T,Odisha Page 19

Suppose we use decision parameter pk ,kth step is the line algorithm by rearranging the

above equation, so that it in values integer calculation.

 Substitute 𝑚𝑚 = Δy
Δx

Where ∆x ,∆y vertical & horizontal separation of the end point position then

⇒ d1 − d2 = 2
Δy
Δx

(xk+1) − 2yk + 2b − 1

We know that xk+1 = (xk + 1)

⇒ pk = ∆x(d1 − d2) = 2∆y(xk + 1) − 2∆xyk − ∆x (2b − 1)

⇒ pk = 2∆yxk − 2∆y − 2∆xyk − ∆x(2b − 1)

⇒ 2∆yxk − 2∆xyk + c (2)

 The sign of pk is the same an the sign of d1 -d2 since ∆x> 0. C is an constant and

c=2 ∆y + ∆x (2b -1) , which is independent pixel at yk is closer to the line path then pixel

at yk+1 (d1<d2) the decision parameter in -ve. In this case we plot lower pixel otherwise

we plot upper pixel.

Coordinate changes along the line occur in unit steps either the x or y direction.

Therefore we can obtain the value of successive parameter using increment integer

calculation at step k + 1 the decision parameter is evaluated at

pk+1 = 2∆y(xk+1) − 2∆x(yk+1) + c

pk+1 − pk = 2∆y(xk+1 − xk) − 2∆x (yk+1 − yk)

 As xk+1 = xk + 1

pk+1 = pk + 2∆y − 2∆x (yk+1 − yk)

The yk+1 - yk is either 0 or 1 depending on the sign of parameter pk

 First parameter p0 is evaluated from the equ-2,At starting point (x0 ,y0)& m evaluated

as Δy
Δx

 ,then p0 = 2∆y − ∆x

Algorithm
Step 1 : Input the two line end points &store left end point in (x0 ,y0)

Step 2 : load (x0 ,y0) into the from buffer plot the first point.

Step 3 : Calculate constants ∆x , ∆y, 2∆y and 2∆y − 2∆x and obtain the starting

value for the decision parameter asp0 = 2∆y − ∆x

Step 4 : At each xk along the line starting at k=0, perform the following last.

 If pk <0 the next point to plot is (xk + 1, yk)&pk+1 = pk + 2∆y

Otherwise the next point to plot is (xk + 1, yk + 1) &

pk+1 = pk +2 ∆y - 2 ∆x

Chapter3 Graphics Output primitive

Copy Right DTE&T,Odisha Page 20

3.4 Midpoint Circle Algorithm

 A circle is defined as a set of points that are all a given distance r from a canter Position

(𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐) then we express the equation as (x-𝑥𝑥𝑐𝑐)2+(y-𝑦𝑦𝑐𝑐)2 – r2.

 If f(X,Y)=0 then the point lies on the circle boundary.

 If f(X,Y)<0 then the point lies inside of in the circle boundary.

 If f(X,Y) > 0 then the point lies on outside circle boundary .

 In mid point circle algorithm the decision parameter of the Kth step in the circle function

evaluated using co-ordinate of the midpoint of the two pixel.

 Centers which are the next possible pixel position to be plotted.

 Let assume that we are giving unit increments to x in the plotting process & determining

the y position using this algorithm.

 Assuming we have justplotted the pixel at (𝑥𝑥𝑘𝑘 , 𝑦𝑦𝑘𝑘).

 We next need to determine whether the pixel at the position (𝑥𝑥𝑘𝑘 + 1, 𝑦𝑦𝑘𝑘) or the one at

position(𝑥𝑥𝑘𝑘 + 1,𝑦𝑦𝑘𝑘 − 1) is closer to the circle.

 Our decision parameter𝑝𝑝𝑘𝑘at the Kth step is the circle function evaluated at the

midpointbetween these two pixels.

 Let us consider the pixel (𝑥𝑥𝑘𝑘+1, 𝑦𝑦𝑘𝑘-1/2) ,Then

𝑝𝑝𝑘𝑘 = 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �𝑥𝑥𝑘𝑘 + 1,𝑦𝑦𝑘𝑘 −
1
2
� ⇒ (𝑥𝑥𝑘𝑘 + 1)2 + (𝑦𝑦𝑘𝑘 −

1
2
)2 − 𝑐𝑐2 (1)

If the 𝑝𝑝𝑘𝑘 < 0 , this midpoint is inside the circle and the pixel on the scan line 𝑦𝑦𝑘𝑘 is closer

to the circle boundary .Otherwise, the midpoint is outside or on the circle boundary, and

we select the pixel on the scan line 𝑦𝑦𝑘𝑘 − 1

 Successive decision parameters areobtained using incremental calculation.

 Avoiding a lot of computation at each step we obtain a recursive expression for the next

decision parameter by evaluating the circle function at sampling position

𝑥𝑥𝑘𝑘+1 + 1 = 𝑥𝑥𝑘𝑘 + 2

𝑝𝑝𝑘𝑘+1 = 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �𝑥𝑥𝑘𝑘+1 + 1,𝑦𝑦𝑘𝑘+1 −
1
2
�

Chapter3 Graphics Output primitive

Copy Right DTE&T,Odisha Page 21

𝑝𝑝𝑘𝑘+1 = [(𝑥𝑥𝑘𝑘 + 1) + 1)]2 + (𝑦𝑦𝑘𝑘+1 −
1
2

)2 − 𝑐𝑐2

⇒ (𝑥𝑥𝑘𝑘 + 1)2 + 2(𝑥𝑥𝑘𝑘 + 1) + 1 + 𝑦𝑦𝑘𝑘+1
2 − 𝑦𝑦𝑘𝑘+1 +

1
4
− 𝑐𝑐2

𝑝𝑝𝑘𝑘+1 − 𝑝𝑝𝑘𝑘 = 2(𝑥𝑥𝑘𝑘 + 1) + (𝑦𝑦𝑘𝑘+1
2 − 𝑦𝑦𝑘𝑘2 − (𝑦𝑦𝑘𝑘+1 − 𝑦𝑦𝑘𝑘) + 1 (3)

𝑝𝑝𝑘𝑘+1 = 𝑝𝑝𝑘𝑘 + 2(𝑥𝑥𝑘𝑘 + 1) + (𝑦𝑦𝑘𝑘+1
2 − 𝑦𝑦𝑘𝑘2 − (𝑦𝑦𝑘𝑘+1 − 𝑦𝑦𝑘𝑘) + 1 (4)

 The value of 𝑦𝑦𝑘𝑘+1is 𝑦𝑦𝑘𝑘 or 𝑦𝑦𝑘𝑘+1

Put𝑦𝑦𝑘𝑘 in place of 𝑦𝑦𝑘𝑘+1

𝑝𝑝𝑘𝑘+1 = 𝑝𝑝𝑘𝑘 + 2(𝑥𝑥𝑘𝑘 + 1) + (𝑦𝑦𝑘𝑘2 − 𝑦𝑦𝑘𝑘2)− (𝑦𝑦𝑘𝑘 − 𝑦𝑦𝑘𝑘) + 1

⇒ 𝑝𝑝𝑘𝑘 + 2(𝑥𝑥𝑘𝑘 + 1) + 1

put𝑦𝑦𝑘𝑘+1 = 𝑦𝑦𝑘𝑘 − 1

𝑝𝑝𝑘𝑘+1= 𝑝𝑝𝑘𝑘+2(𝑥𝑥𝑘𝑘 +1)+((𝑦𝑦𝑘𝑘-1)2-𝑦𝑦𝑘𝑘2)-(𝑦𝑦𝑘𝑘-𝑦𝑦𝑘𝑘)+1

𝑝𝑝𝑘𝑘+1= 𝑝𝑝𝑘𝑘+2(𝑥𝑥𝑘𝑘 +1)+(𝑦𝑦𝑘𝑘2- 2𝑦𝑦𝑘𝑘+1 -𝑦𝑦𝑘𝑘2)+1+1

𝑝𝑝𝑘𝑘+1 = 𝑝𝑝𝑘𝑘 + 2(𝑥𝑥𝑘𝑘 + 1) − 2𝑦𝑦𝑘𝑘 − 2

The initial decision parameter is obtain by evaluating the circle function at the start

position (𝑥𝑥0,𝑦𝑦0) = (0,r) then we will get another point (1, r-½)

𝑝𝑝0 = 12+(r-½)2 – r2

𝑝𝑝0 = 12+r2 – r+1
4
-r2

𝑝𝑝0 =
5
4
− 𝑐𝑐

Algorithm

Step1: Input radius 'r' & circle canter (𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐)and obtain the first point on the

circumference of a circle cantered on the origin as (𝑥𝑥0,𝑦𝑦0) = (0, r).

Step2: Calculate the initial value of the decision parameter as 𝑝𝑝0 = 5
 4
− 𝑐𝑐 .

Step3: At each 𝑥𝑥𝑘𝑘 position, starting at k=0, Perform the following test: If 𝑝𝑝𝑘𝑘 < 0, the next

point along the circle centred on (0,0)is (𝑥𝑥𝑘𝑘+1, 𝑦𝑦𝑘𝑘) &

𝑝𝑝𝑘𝑘+1 = 𝑝𝑝𝑘𝑘 + 2𝑥𝑥𝑘𝑘+1 + 1

Chapter3 Graphics Output primitive

Copy Right DTE&T,Odisha Page 22

Otherwise, the next point along the circle is (𝑥𝑥𝑘𝑘 + 1,𝑦𝑦𝑘𝑘 − 1)&

𝑝𝑝𝑘𝑘+1 = 𝑝𝑝𝑘𝑘 + 2𝑥𝑥𝑘𝑘+1+1 − 2𝑦𝑦𝑘𝑘+1

𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑐𝑐 2𝑥𝑥𝑘𝑘+1 = 2𝑥𝑥𝑘𝑘 + 2 𝑎𝑎𝑎𝑎𝑑𝑑 2𝑦𝑦𝑘𝑘+1 = 2𝑦𝑦𝑘𝑘 − 2.

Step4:Determine symmetry points in the other seven octants.

Step5: Move each calculated pixel position (x,y) on the circular path centered on

(𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐)& plot the coordinate values; x = x+𝑥𝑥𝑐𝑐 , y= y+𝑦𝑦𝑐𝑐.

Step6: Repeat step3 through 5unit x>=y.

3.5 Boundary Fill Algorithm

 There are two types of filling area i.e

4-connected region and 8-connected region

 4-connected region: From a given pixel, the region

that you can get to by a series of 4 way moves (N,

S, E and W).

 8-connected region: From a given pixel, the region that you can get to by a series of 8

way moves (N, S, E, W, NE, NW, SE, and SW).

 Start at a point inside a region

 Paint the interior outward to the edge

 The edge must be specified in a single color

 Fill the 4-connected or 8-connected region

o 4-connected fill is faster, but can have problems.

Algorithm
void BoundaryFill4(int x, int y, int newcolor, int edgecolor)

{

 int current;

 current = ReadPixel(x, y);

 if(current != edgecolor && current != newcolor)

 {

 BoundaryFill4(x+1, y, newcolor, edgecolor);

 BoundaryFill4(x-1, y, newcolor, edgecolor);

 BoundaryFill4(x, y+1, newcolor, edgecolor);

Chapter3 Graphics Output primitive

Copy Right DTE&T,Odisha Page 23

 BoundaryFill4(x, y-1, newcolor, edgecolor);

 }}

Flood Fill Algorithm

 Used when an area defined with multiple color boundaries.

 Start at a point inside a region.

 Replace a specified interior color (old color) with fill color.

 Fill the 4-connected or 8-connected region until all interior points being replaced

Algorithm
void flood_fill4(intx,inty,intfill_color,intold_color)

{

int current;

 current=getpixel (x,y);

 if (current==old_color)

 {

putpixel (x,y,fill_color);

 flood_fill4(x-1,y, fill_color, old_color);

 flood_fill4(x,y-1, fill_color, old_color);

 flood_fill4(x,y+1, fill_color, old_color);

 flood_fill4(x+1,y, fill_color, old_color);

}}

